
Machine Learning

Amir Globerson - Tel Aviv University

Learning in neural computation & cognition

One of the hallmarks of cognition

Still not sufficiently understood

Machine learning is a field that:

Designs algorithms for learning

Builds theory for understanding learning

Not necessarily biologically or cognitively
inspired

State of the Art
Face recognition - Human accuracy

Text based image search - Works very well
in some cases.

Costumes?
Speech recognition -
Functional for search.

Game playing.

Self driving cars

Challenges
Translation:

On November 9, Israeli Prime
Minister Benjamin Netanyahu
congratulated President-elect
Donald Trump through a video
message, in which the Israeli
leader could barely contain his
giddiness at the prospect of a
friendlier White House.

 ב -9 בנובמבר, ראש ממשלת
 ישראל, בנימין נתניהו, בירך
 הנשיא הנבחר דונלד טראמפ
 באמצעות הודעת וידאו, שבו
 המנהיג הישראלי הצליח אך
 בקושי להכיל הסחרחורת
 בפרוספקט של הבית הלבן

.ידידותית יותר

On 9 November, Israeli
Prime Minister Benjamin
Netanyahu congratulated
President-elect Donald
Trump through a video
message, in which the
Israeli leader was able to
barely contain dizziness
prospect of the White
House more friendly.

Conversational agents (e.g., Turing test)

Robotics: Assistance, chores, risk

https://www.youtube.com/watch?v=Thpjk69h9P8

ML Research

Always ask: how can I use data to learn rules

Considerations:

What type of data do I have?

What rules do I want to learn?

Abstract away…

Define a clean mathematical formulation

Design algorithms that make sense

Analyze their generalization properties

A learning problem
Here are two classes.

Class 1

Class 2

Test

TextClass 1

Class 2

Train After reshuffling

Test

Learning mappings
• Learn mappings between inputs and interpretations

Wash the dishes

Wash the dishes שטוף את הכלים

Plates

Malignant Tissue

Water the plants

Supervised Learning

quail apple apple corn corn
Labeled

Data

Model
Class

Consider classifiers of the form y = f(x;w)

Features
1.1 -0.5 0 0 0.3 …

quail
-1 0 1.2 -0.4 0.1 …

apple
1.1 -0.5 0 0 0.3 … -1 0 1.2 -0.4 0.1 …

apple corn

Learning Find that works well on the training data ww

x

y

Learning Theory

Training. Find a classifier

Testing. How well did I do?

Learning Theory

Training. Find a classifier

Testing. How well did I do?

Learning Theory

Training. Find a classifier

Testing. How well did I do?

Learning Theory

Training. Find a classifier

Testing. How well did I do?

Learning Theory

• What does training error tell us about
generalization error?

• Intuitively:

• As you get more data, training and generalization error
become more ______?

• As you learn with a richer set of models training and
generalization error become more ______?

A Generalization Bound

• Suppose you have a set of H possible
classifiers

• Your training error is

• Generalization error will be (with
probability greater than

etrn

etst  etrn +

r
1

2n
log

2H

�

• What happens with infinite classes?

1� �

Learning Theory

• You will not learn well if:

• Your classifiers are not a good
description of the data

• Your classifiers are too complex

• Good approach: choose the
simplest class that contains the
rules you will need to learn

• Impossible without prior
knowledge

Scenarios

Set of rules you use

The “real” rule

Set of rules you use

The “real” rule

Good Bad

Scenarios

Set of rules you use

The “real” rule

Bad

The “real” rule

Terrible

A model for AI

Water the plants

Wash the dishes

Plates

Deep Learning

quail

Not really neural networks. Don’t use spikes.
Each layer is a linear function of previous, plus
some non-linearity.

But, can basically represent any function (with
enough units). Is that a good thing?

Some History

quail

Had some limitations, and “lost” to support
vector machines in the 90s.

Re emerged in full force since 2000 as “deep
learning”. Main reason: amazing performance in
image recognition.

The Recipe

quail apple apple corn corn
Labeled

Data

Model
Class

Consider classifiers of the form y = f(x;w)

Features
1.1 -0.5 0 0 0.3 …

quail
-1 0 1.2 -0.4 0.1 …

apple
1.1 -0.5 0 0 0.3 … -1 0 1.2 -0.4 0.1 …

apple corn

Learning Find that works well on the training data ww

x

y

Learning and optimization

• Find weights that minimize error

• Objective has multiple local
minima

• Computationally impossible to
find the global optimum (NP hard)

• Serious problem in practice

w1 w2 5
7
4

w

er
r

The (temporary) decline of Neural Networks

• Optimization was a key difficulty with
multi-layer architecture

• Support vector machines (early 90s) are
one layer architecture that:

• Can be globally optimized efficiently

• Works well in practice

• Led to decrease in interest in NN

w1
5

w

er
r

Why did deep learning win?

• Huge labeled datasets became available

• Focus on certain simple training
algorithms

• The some magic happens, which we do
not yet understand!

• For images, the deep learning architecture
is closely inspired by visual cortex, and
this is where the main win is.

Unsupervised Learning
• Supervised data needs labels.

• Many images. Very few labels.

• But life is more like this:

Unsupervised Learning

Unlabeled
Data

• What’s it good for?

• Learning to generate images/text/music etc

• Learning useful features

• If we have some labeled data, we can use them
jointly (semi supervised learning)

Unsupervised Learning
Clustering PCA

Graph based SSL

Autoencoders

3.2

1.1

-0.7 Reconstruct

Goal: Learn features that yield good reconstruction

Needs to be a “small” set of features. Why?

If function is linear, you get PCA!

Generative Adversarial Networks
• An approach proposed by Goodfelllow and

colleagues.

• Consider a generative model:

• Here mapping from z to x is deterministic. Only
source of stochasticity is z.

z ✓ x

G(z;✓)

https://arxiv.org/abs/1406.2661

GANs Approach
• The model generates x distributed as

• We observe data distributed as

• In principle, we want to tune such that data and
model distribution are close.

• ML is one way of doing this, but is hard to estimate.

• GAN is another.

p(x;✓)

pD(x)

✓

The GAN Game
• Need some function to measure similarity between

data and model distribution.

• Key idea: need to identify cases where the model
generates “unreal” points.

Adversarial Nets Framework

x sampled from
data

Differentiable
function D

D(x) tries to be
near 1

Input noise z

Differentiable
function G

x sampled from
model

D

D tries to make
D(G(z)) near 0,
G tries to make
D(G(z)) near 1

Figure 12: The GAN framework pits two adversaries against each other in a game.
Each player is represented by a di↵erentiable function controlled by a set of parameters.
Typically these functions are implemented as deep neural networks. The game plays
out in two scenarios. In one scenario, training examples x are randomly sampled from
the training set and used as input for the first player, the discriminator, represented
by the function D. The goal of the discriminator is to output the probability that its
input is real rather than fake, under the assumption that half of the inputs it is ever
shown are real and half are fake. In this first scenario, the goal of the discriminator is
for D(x) to be near 1. In the second scenario, inputs z to the generator are randomly
sampled from the model’s prior over the latent variables. The discriminator then
receives input G(z), a fake sample created by the generator. In this scenario, both
players participate. The discriminator strives to make D(G(z)) approach 0 while the
generative strives to make the same quantity approach 1. If both models have su�cient
capacity, then the Nash equilibrium of this game corresponds to the G(z) being drawn
from the same distribution as the training data, and D(x) = 1

2

for all x.

19

Adversarial Nets Framework

x sampled from
data

Differentiable
function D

D(x) tries to be
near 1

Input noise z

Differentiable
function G

x sampled from
model

D

D tries to make
D(G(z)) near 0,
G tries to make
D(G(z)) near 1

Figure 12: The GAN framework pits two adversaries against each other in a game.
Each player is represented by a di↵erentiable function controlled by a set of parameters.
Typically these functions are implemented as deep neural networks. The game plays
out in two scenarios. In one scenario, training examples x are randomly sampled from
the training set and used as input for the first player, the discriminator, represented
by the function D. The goal of the discriminator is to output the probability that its
input is real rather than fake, under the assumption that half of the inputs it is ever
shown are real and half are fake. In this first scenario, the goal of the discriminator is
for D(x) to be near 1. In the second scenario, inputs z to the generator are randomly
sampled from the model’s prior over the latent variables. The discriminator then
receives input G(z), a fake sample created by the generator. In this scenario, both
players participate. The discriminator strives to make D(G(z)) approach 0 while the
generative strives to make the same quantity approach 1. If both models have su�cient
capacity, then the Nash equilibrium of this game corresponds to the G(z) being drawn
from the same distribution as the training data, and D(x) = 1

2

for all x.

19

• If you can tell which is real and which is “fake” then
model is not perfect.

The GAN Game
• Need some function to measure similarity between

data and model distribution.

• The GAN idea: let a “discriminator” function try to
identify inputs x as real or model.

• If discriminator fails, we have a good model!

• Formally, discriminator is a function D(x) from x to
[0,1].

• D(x) models the probability that x is real

The Discriminator
• In practice, the discriminator will be some function

from X to [0,1], parameterized by �

x

� D(x;�)

• Usually some multilayer network.

• Interestingly, this is a limited classifier. Cannot
discriminate with arbitrary power.

The GAN Game
• From Goodfellow tutorial.

Adversarial Nets Framework

x sampled from
data

Differentiable
function D

D(x) tries to be
near 1

Input noise z

Differentiable
function G

x sampled from
model

D

D tries to make
D(G(z)) near 0,
G tries to make
D(G(z)) near 1

Figure 12: The GAN framework pits two adversaries against each other in a game.
Each player is represented by a di↵erentiable function controlled by a set of parameters.
Typically these functions are implemented as deep neural networks. The game plays
out in two scenarios. In one scenario, training examples x are randomly sampled from
the training set and used as input for the first player, the discriminator, represented
by the function D. The goal of the discriminator is to output the probability that its
input is real rather than fake, under the assumption that half of the inputs it is ever
shown are real and half are fake. In this first scenario, the goal of the discriminator is
for D(x) to be near 1. In the second scenario, inputs z to the generator are randomly
sampled from the model’s prior over the latent variables. The discriminator then
receives input G(z), a fake sample created by the generator. In this scenario, both
players participate. The discriminator strives to make D(G(z)) approach 0 while the
generative strives to make the same quantity approach 1. If both models have su�cient
capacity, then the Nash equilibrium of this game corresponds to the G(z) being drawn
from the same distribution as the training data, and D(x) = 1

2

for all x.

19

https://arxiv.org/pdf/1406.2661.pdf

The GAN Optimization Problem
• The generator wants to find parameters that confuse

the discriminator as much as possible.

• Denote the “accuracy” of the discriminator by V(D,G)

• Namely, if data is generated by G and we use
discriminator D, what is the error.

• Then we want to solve:
min

✓
max

�
V (D(�), G(✓))

• Just need to specify V.

Generating Faces

• These people do not exist!

Some Examples
• From Isola et al., conditional GANs

Image-to-Image Translation with Conditional Adversarial Networks

Phillip Isola Jun-Yan Zhu Tinghui Zhou Alexei A. Efros

Berkeley AI Research (BAIR) Laboratory
University of California, Berkeley

{isola,junyanz,tinghuiz,efros}@eecs.berkeley.edu

Labels to Facade BW to Color

Aerial to Map

Labels to Street Scene

Edges to Photo

input output input

inputinput

input output

output

outputoutput

input output

Day to Night

Figure 1: Many problems in image processing, graphics, and vision involve translating an input image into a corresponding output image.
These problems are often treated with application-specific algorithms, even though the setting is always the same: map pixels to pixels.
Conditional adversarial nets are a general-purpose solution that appears to work well on a wide variety of these problems. Here we show
results of the method on several. In each case we use the same architecture and objective, and simply train on different data.

Abstract

We investigate conditional adversarial networks as a
general-purpose solution to image-to-image translation
problems. These networks not only learn the mapping from
input image to output image, but also learn a loss func-
tion to train this mapping. This makes it possible to apply
the same generic approach to problems that traditionally
would require very different loss formulations. We demon-
strate that this approach is effective at synthesizing photos
from label maps, reconstructing objects from edge maps,
and colorizing images, among other tasks. As a commu-
nity, we no longer hand-engineer our mapping functions,
and this work suggests we can achieve reasonable results
without hand-engineering our loss functions either.

Many problems in image processing, computer graphics,
and computer vision can be posed as “translating” an input
image into a corresponding output image. Just as a concept

may be expressed in either English or French, a scene may
be rendered as an RGB image, a gradient field, an edge map,
a semantic label map, etc. In analogy to automatic language
translation, we define automatic image-to-image translation
as the problem of translating one possible representation of
a scene into another, given sufficient training data (see Fig-
ure 1). One reason language translation is difficult is be-
cause the mapping between languages is rarely one-to-one
– any given concept is easier to express in one language
than another. Similarly, most image-to-image translation
problems are either many-to-one (computer vision) – map-
ping photographs to edges, segments, or semantic labels,
or one-to-many (computer graphics) – mapping labels or
sparse user inputs to realistic images. Traditionally, each of
these tasks has been tackled with separate, special-purpose
machinery (e.g., [7, 15, 11, 1, 3, 37, 21, 26, 9, 42, 46]),
despite the fact that the setting is always the same: predict
pixels from pixels. Our goal in this paper is to develop a
common framework for all these problems.

1

ar
X

iv
:1

61
1.

07
00

4v
1

 [c
s.C

V
]

21
 N

ov
 2

01
6

https://arxiv.org/pdf/1611.07004.pdf

Text to Image Generation

128x128
GAWWN

[20]

256x256
StackGAN

Text
description

64x64
GAN-INT-CLS

[22]

This small bird
has a white
breast, light
grey head, and
black wings
and tail

A bird with a
medium orange
bill white body
gray wings and
webbed feet

A small yellow
bird with a
black crown
and a short
black pointed
beak

A small bird
with varying
shades of
brown with
white under the
eyes

The bird is
short and
stubby with
yellow on its
body

This bird is red
and brown in
color, with a
stubby beak

This small
black bird has
a short, slightly
curved bill and
long legs

Figure 3. Example results by our proposed StackGAN, GAWWN [20], and GAN-INT-CLS [22] conditioned on text descriptions from
CUB test set. GAWWN and GAN-INT-CLS generate 16 images for each text description, respectively. We select the best one for each of
them to compare with our StackGAN.

Figure 4. Example results by our proposed StackGAN and GAN-INT-CLS [22] conditioned on text descriptions from Oxford-102 test set.

ble 1. Representative examples generated by text descrip-
tions by different methods are shown in Figures 3 and 4.

Our StackGAN achieves the best inception score and av-
erage human rank on both datasets. Compared with GAN-
INT-CLS [22], StackGAN achieves 28.47% improvement
in terms of inception score on CUB dataset (from 2.88 to
3.70), and 20.30% improvement on Oxford-102 (from 2.66
to 3.20). The better average human rank of our StackGAN
also indicates our proposed method is able to generate more
realistic samples conditioned on text descriptions.

As shown in Figure 3, the 64⇥64 samples generated
by GAN-INT-CLS can only reflect the general shape and
color of the birds. Their results lack vivid parts (e.g., beak
and legs) and convincing details in most cases, which make
them neither realistic enough nor have sufficiently high res-
olution. By using additional conditioning variables on lo-
cation constraints, GAWWN [20] obtains a better inception
score on CUB dataset, which is still slightly lower than ours.
It generates higher resolution images with more details than
GAN-INT-CLS, as shown in Figure 3. However, as men-

• From Zhang et al., StackGAN

https://arxiv.org/pdf/1612.03242.pdf

Reinforcement Learning
• We often want to learn how to act in an

environment:

• Self driving cars

• Playing games

• Dialogue

• Our actions will affect the world

• What is the best policy?

• How do we learn?

Reinforcement Learning

• One of the hottest topic of research and
applications currently.

• Led to:

• Winning Go.

• Playing video games as well as humans.

• Self driving cars.

• Dialogue is far behind…

Teaching ML

• Many toolboxes for learning:

• TensorFlow (Google)

• MXNet (Amazon)

• CNTK (Microsoft)

• Let you train and use models.

• Many nice demos

