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Learning in neural computation & cognition

One of the hallmarks of cognition

Still not sufficiently understood

Machine learning is a field that:

Designs algorithms for learning 

Builds theory for understanding learning

Not necessarily biologically or cognitively 
inspired



State of the Art
Face recognition - Human accuracy

Text based image search - Works very well 
in some cases. 

Costumes?
Speech recognition - 
Functional for search. 

Game playing.

Self driving cars



Challenges
Translation:

On November 9, Israeli Prime 
Minister Benjamin Netanyahu 
congratulated President-elect 
Donald Trump through a video 
message, in which the Israeli 
leader could barely contain his 
giddiness at the prospect of a 
friendlier White House.

 ב -9 בנובמבר, ראש ממשלת
 ישראל, בנימין נתניהו, בירך
 הנשיא הנבחר דונלד טראמפ
 באמצעות הודעת וידאו, שבו
 המנהיג הישראלי הצליח אך
 בקושי להכיל הסחרחורת
 בפרוספקט של הבית הלבן

.ידידותית יותר

On 9 November, Israeli 
Prime Minister Benjamin 
Netanyahu congratulated 
President-elect Donald 
Trump through a video 
message, in which the 
Israeli leader was able to 
barely contain dizziness 
prospect of the White 
House more friendly.

Conversational agents (e.g., Turing test)

Robotics:  Assistance, chores, risk

https://www.youtube.com/watch?v=Thpjk69h9P8


ML Research 

Always ask: how can I use data to learn rules

Considerations:

What type of data do I have?

What rules do I want to learn?

Abstract away…

Define a clean mathematical formulation

Design algorithms that make sense

Analyze their generalization properties



A learning problem
Here are two classes.

Class 1

Class 2



Test

TextClass 1

Class 2



Train After reshuffling



Test



Learning mappings
• Learn mappings between inputs and interpretations

Wash the dishes

Wash the dishes שטוף את הכלים

Plates

Malignant Tissue

Water the plants



Supervised Learning

quail apple apple corn corn
Labeled 

Data

Model 
Class

Consider classifiers of the form y = f(x;w)

Features
1.1 -0.5 0 0 0.3 …

quail
-1 0 1.2 -0.4 0.1 …

apple
1.1 -0.5 0 0 0.3 … -1 0 1.2 -0.4 0.1 …

apple corn

Learning Find     that works well on the training data    ww

x

y



Learning Theory

Training. Find a classifier

Testing. How well did I do?
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Learning Theory

Training. Find a classifier

Testing. How well did I do?



Learning Theory

• What does training error tell us about 
generalization error?

• Intuitively: 

• As you get more data, training and generalization error 
become more ______?

• As you learn with a richer set of models training and 
generalization error become more ______?



A Generalization Bound

• Suppose you have a set of H possible 
classifiers

• Your training error is

• Generalization error will be (with 
probability greater than

etrn
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r
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• What happens with infinite classes?

1� �



Learning Theory

• You will not learn well if:

• Your classifiers are not a good 
description of the data

• Your classifiers are too complex

• Good approach: choose the 
simplest class that contains the 
rules you will need to learn

• Impossible without prior 
knowledge



Scenarios

Set of rules you use

The “real” rule

Set of rules you use

The “real” rule

Good Bad



Scenarios

Set of rules you use

The “real” rule

Bad

The “real” rule

Terrible



A model for AI

Water the plants

Wash the dishes

Plates



Deep Learning

quail

Not really neural networks. Don’t use spikes. 
Each layer is a linear function of previous, plus 
some non-linearity.

But, can basically represent any function (with 
enough units). Is that a good thing?



Some History

quail

Had some limitations, and “lost” to support 
vector machines in the 90s. 

Re emerged in full force since 2000 as “deep 
learning”. Main reason: amazing performance in 
image recognition.



The Recipe

quail apple apple corn corn
Labeled 

Data

Model 
Class

Consider classifiers of the form y = f(x;w)

Features
1.1 -0.5 0 0 0.3 …

quail
-1 0 1.2 -0.4 0.1 …

apple
1.1 -0.5 0 0 0.3 … -1 0 1.2 -0.4 0.1 …

apple corn

Learning Find     that works well on the training data    ww

x

y



Learning and optimization

• Find weights that minimize error

• Objective has multiple local 
minima

• Computationally impossible to 
find the global optimum (NP hard)

• Serious problem in practice

w1 w2 5
7
4

w
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r



The (temporary) decline of Neural Networks

• Optimization was a key difficulty with 
multi-layer architecture

• Support vector machines (early 90s) are 
one layer architecture that:

• Can be globally optimized efficiently

• Works well in practice

• Led to decrease in interest in NN
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Why did deep learning win?

• Huge labeled datasets became available

• Focus on certain simple training 
algorithms

• The some magic happens, which we do 
not yet understand!

• For images, the deep learning architecture 
is closely inspired by visual cortex, and 
this is where the main win is. 



Unsupervised Learning
• Supervised data needs labels. 

• Many images. Very few labels.

• But life is more like this:



Unsupervised Learning

Unlabeled 
Data

• What’s it good for?

• Learning to generate images/text/music etc

• Learning useful features

• If we have some labeled data, we can use them 
jointly (semi supervised learning)



Unsupervised Learning
Clustering PCA

Graph based SSL



Autoencoders

3.2

1.1

-0.7 Reconstruct

Goal: Learn features that yield good reconstruction

Needs to be a “small” set of features. Why? 

If function is linear, you get PCA!



Generative Adversarial Networks
• An approach proposed by Goodfelllow and 

colleagues. 

• Consider a generative model:

• Here mapping from z to x is deterministic. Only 
source of stochasticity is z.

z ✓ x

G(z;✓)

https://arxiv.org/abs/1406.2661


GANs Approach
• The model generates x distributed as 

• We observe data distributed as  

• In principle, we want to tune     such that data and 
model distribution are close. 

• ML is one way of doing this, but is hard to estimate. 

• GAN is another. 

p(x;✓)

pD(x)

✓



The GAN Game 
• Need some function to measure similarity between 

data and model distribution. 

• Key idea: need to identify cases where the model 
generates “unreal” points.

Adversarial Nets Framework

x sampled from 
data

Differentiable 
function D

D(x) tries to be 
near 1

Input noise z

Differentiable 
function G

x sampled from 
model

D

D tries to make 
D(G(z)) near 0,
G tries to make 
D(G(z)) near 1

Figure 12: The GAN framework pits two adversaries against each other in a game.
Each player is represented by a di↵erentiable function controlled by a set of parameters.
Typically these functions are implemented as deep neural networks. The game plays
out in two scenarios. In one scenario, training examples x are randomly sampled from
the training set and used as input for the first player, the discriminator, represented
by the function D. The goal of the discriminator is to output the probability that its
input is real rather than fake, under the assumption that half of the inputs it is ever
shown are real and half are fake. In this first scenario, the goal of the discriminator is
for D(x) to be near 1. In the second scenario, inputs z to the generator are randomly
sampled from the model’s prior over the latent variables. The discriminator then
receives input G(z), a fake sample created by the generator. In this scenario, both
players participate. The discriminator strives to make D(G(z)) approach 0 while the
generative strives to make the same quantity approach 1. If both models have su�cient
capacity, then the Nash equilibrium of this game corresponds to the G(z) being drawn
from the same distribution as the training data, and D(x) = 1

2

for all x.

19

Adversarial Nets Framework

x sampled from 
data

Differentiable 
function D

D(x) tries to be 
near 1

Input noise z

Differentiable 
function G

x sampled from 
model

D

D tries to make 
D(G(z)) near 0,
G tries to make 
D(G(z)) near 1

Figure 12: The GAN framework pits two adversaries against each other in a game.
Each player is represented by a di↵erentiable function controlled by a set of parameters.
Typically these functions are implemented as deep neural networks. The game plays
out in two scenarios. In one scenario, training examples x are randomly sampled from
the training set and used as input for the first player, the discriminator, represented
by the function D. The goal of the discriminator is to output the probability that its
input is real rather than fake, under the assumption that half of the inputs it is ever
shown are real and half are fake. In this first scenario, the goal of the discriminator is
for D(x) to be near 1. In the second scenario, inputs z to the generator are randomly
sampled from the model’s prior over the latent variables. The discriminator then
receives input G(z), a fake sample created by the generator. In this scenario, both
players participate. The discriminator strives to make D(G(z)) approach 0 while the
generative strives to make the same quantity approach 1. If both models have su�cient
capacity, then the Nash equilibrium of this game corresponds to the G(z) being drawn
from the same distribution as the training data, and D(x) = 1

2

for all x.

19

• If you can tell which is real and which is “fake” then 
model is not perfect.



The GAN Game 
• Need some function to measure similarity between 

data and model distribution.  

• The GAN idea: let a “discriminator” function try to 
identify inputs x as real or model. 

• If discriminator fails, we have a good model! 

• Formally, discriminator is a function D(x) from x to 
[0,1]. 

• D(x) models the probability that x is real



The Discriminator 
• In practice, the discriminator will be some function 

from X to [0,1], parameterized by  �

x

� D(x;�)

• Usually some multilayer network. 

• Interestingly, this is a limited classifier. Cannot 
discriminate with arbitrary power.



The GAN Game
• From Goodfellow tutorial. 
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https://arxiv.org/pdf/1406.2661.pdf


The GAN Optimization Problem
• The generator wants to find parameters that confuse 

the discriminator as much as possible. 

• Denote the “accuracy” of the discriminator by V(D,G) 

• Namely, if data is generated by G and we use 
discriminator D, what is the error. 

• Then we want to solve:
min

✓
max

�
V (D(�), G(✓))

• Just need to specify V. 



Generating Faces

• These people do not exist!



Some Examples
• From Isola et al., conditional GANs

Image-to-Image Translation with Conditional Adversarial Networks

Phillip Isola Jun-Yan Zhu Tinghui Zhou Alexei A. Efros

Berkeley AI Research (BAIR) Laboratory
University of California, Berkeley

{isola,junyanz,tinghuiz,efros}@eecs.berkeley.edu

Labels to Facade BW to Color

Aerial to Map

Labels to Street Scene

Edges to Photo

input output input

inputinput

input output

output

outputoutput

input output

Day to Night

Figure 1: Many problems in image processing, graphics, and vision involve translating an input image into a corresponding output image.
These problems are often treated with application-specific algorithms, even though the setting is always the same: map pixels to pixels.
Conditional adversarial nets are a general-purpose solution that appears to work well on a wide variety of these problems. Here we show
results of the method on several. In each case we use the same architecture and objective, and simply train on different data.

Abstract

We investigate conditional adversarial networks as a
general-purpose solution to image-to-image translation
problems. These networks not only learn the mapping from
input image to output image, but also learn a loss func-
tion to train this mapping. This makes it possible to apply
the same generic approach to problems that traditionally
would require very different loss formulations. We demon-
strate that this approach is effective at synthesizing photos
from label maps, reconstructing objects from edge maps,
and colorizing images, among other tasks. As a commu-
nity, we no longer hand-engineer our mapping functions,
and this work suggests we can achieve reasonable results
without hand-engineering our loss functions either.

Many problems in image processing, computer graphics,
and computer vision can be posed as “translating” an input
image into a corresponding output image. Just as a concept

may be expressed in either English or French, a scene may
be rendered as an RGB image, a gradient field, an edge map,
a semantic label map, etc. In analogy to automatic language
translation, we define automatic image-to-image translation
as the problem of translating one possible representation of
a scene into another, given sufficient training data (see Fig-
ure 1). One reason language translation is difficult is be-
cause the mapping between languages is rarely one-to-one
– any given concept is easier to express in one language
than another. Similarly, most image-to-image translation
problems are either many-to-one (computer vision) – map-
ping photographs to edges, segments, or semantic labels,
or one-to-many (computer graphics) – mapping labels or
sparse user inputs to realistic images. Traditionally, each of
these tasks has been tackled with separate, special-purpose
machinery (e.g., [7, 15, 11, 1, 3, 37, 21, 26, 9, 42, 46]),
despite the fact that the setting is always the same: predict
pixels from pixels. Our goal in this paper is to develop a
common framework for all these problems.
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https://arxiv.org/pdf/1611.07004.pdf


Text to Image Generation

128x128 
GAWWN 

[20] 

256x256 
StackGAN 

Text 
description 

64x64 
GAN-INT-CLS 

[22] 

This small bird 
has a white 
breast, light 
grey head, and 
black wings 
and tail 

A bird with a 
medium orange 
bill white body 
gray wings and 
webbed feet  

A small yellow 
bird with a 
black crown 
and a short 
black pointed 
beak 

A small bird 
with varying 
shades of 
brown with 
white under the 
eyes 

The bird is 
short and 
stubby with 
yellow on its 
body 

This bird is red 
and brown in 
color, with a 
stubby beak 

This small 
black bird has 
a short, slightly 
curved bill and 
long legs 

Figure 3. Example results by our proposed StackGAN, GAWWN [20], and GAN-INT-CLS [22] conditioned on text descriptions from
CUB test set. GAWWN and GAN-INT-CLS generate 16 images for each text description, respectively. We select the best one for each of
them to compare with our StackGAN.

Figure 4. Example results by our proposed StackGAN and GAN-INT-CLS [22] conditioned on text descriptions from Oxford-102 test set.

ble 1. Representative examples generated by text descrip-
tions by different methods are shown in Figures 3 and 4.

Our StackGAN achieves the best inception score and av-
erage human rank on both datasets. Compared with GAN-
INT-CLS [22], StackGAN achieves 28.47% improvement
in terms of inception score on CUB dataset (from 2.88 to
3.70), and 20.30% improvement on Oxford-102 (from 2.66
to 3.20). The better average human rank of our StackGAN
also indicates our proposed method is able to generate more
realistic samples conditioned on text descriptions.

As shown in Figure 3, the 64⇥64 samples generated
by GAN-INT-CLS can only reflect the general shape and
color of the birds. Their results lack vivid parts (e.g., beak
and legs) and convincing details in most cases, which make
them neither realistic enough nor have sufficiently high res-
olution. By using additional conditioning variables on lo-
cation constraints, GAWWN [20] obtains a better inception
score on CUB dataset, which is still slightly lower than ours.
It generates higher resolution images with more details than
GAN-INT-CLS, as shown in Figure 3. However, as men-

• From Zhang et al., StackGAN

https://arxiv.org/pdf/1612.03242.pdf


Reinforcement Learning
• We often want to learn how to act in an 

environment:

• Self driving cars

• Playing games

• Dialogue  

• Our actions will affect the world

• What is the best policy?

• How do we learn?



Reinforcement Learning

• One of the hottest topic of research and 
applications currently.

• Led to:

• Winning Go.

• Playing video games as well as humans.

• Self driving cars.

• Dialogue is far behind…



Teaching ML

• Many toolboxes for learning:

• TensorFlow (Google)

• MXNet (Amazon)

• CNTK (Microsoft)

• Let you train and use models.

• Many nice demos


