
The Big Ideas in Computer Science for K-12
Curricula

Tim Bell

University of Canterbury, NZ

tim.bell@canterbury.ac.nz

Paul Tymann

Rochester Institute of Technology, USA

paul.tymann@rit.edu

Amiram Yehudai

Tel Aviv University, Israel

amiramy@tau.ac.il

Abstract

When teaching computer science it can be easy to focus on details and

lose sight of the bigger picture. This is particularly concerning with new pre-

tertiary curricula being adopted in many countries as teachers grapple with

a bewildering array of topics to teach. This paper steps back and introduces

a list of ten big ideas of computer science that have been distilled based

on input from curriculum designers and computer science education experts

around the world. The big ideas are presented in a way that a classroom

teacher will be able to engage with, so that they can use them to relate topics

that they teach to the context of a bigger picture.

1 Introduction
As computer science appears as a subject in K-12 (pre-tertiary) curricula around

the world, often from the first year of schooling (for example, [2, 3, 5, 6, 8]), it

is important to articulate the big ideas of the subject to inform curriculum design,

and more importantly, to enable teachers to understand the subject that they are

being asked to deliver in the classroom. This is particularly important at the K-

8 (elementary/primary) level where teachers are often generalists, and are being

asked to incorporate ideas that are new to them into their classroom.



Focusing on a big picture view of a subject makes it easier for teachers to

understand what the subject is about. It helps them to see how abstract ideas

like algorithms, binary numbers and coding underpin things that deeply affect the

modern digital world. Without a big picture view, teachers can perceive the ma-

terial as an unwelcome imposition on their limited classroom time, and teachers

who have not studied the subject previously can see the topics as a collection

of esoteric facts and jargon. A big picture view also helps curriculum designers

to make sure that it is not based on low-hanging fruit such as topics for which

resources are already available for teaching them. For example, the plethora of

introductory coding websites might give the impression that programming is the

only topic of relevance in computer science.

Another concern amongst teachers as computer science appears in the curricu-

lum is that things will change so fast that the curriculum will soon be out of date.

A big picture view of a subject, one that focuses on the big ideas of the subject,

paints a picture of a discipline with longevity, rather than something that needs to

change every time a new technology develops. The big ideas for computing edu-

cation should be stable. As Armoni points out “if complex and major changes [to

a curriculum] seem unavoidable, the program probably emphasises technological

or trendy aspects more than necessary, or the topics constituting its core should

have been selected better at the start” [1]. These big ideas are intended to help

curriculum designers to focus on core computer science topics, and to help teach-

ers see the long-term value of the subject. By focusing on big ideas educators can

distinguish relevant knowledge from skills. Skills (such as programming) are best

built up over time, whereas foundational knowledge affects a student’s view of the

topic (such as how it is possible to search billions of items quickly, or that new

systems need to be designed with security in mind from the start).

The big ideas presented in this paper are not meant to be general principles,

discipline areas, or curriculum topics, but rather ideas that capture the essence

of the discipline. They are not intended to cover every idea that comes up in the

study of the topic (although they do have broad coverage, since curriculum content

will lay the foundation for students to encounter these ideas). They should also

have longevity, and not focus on a specific technology. There are already many

overviews of what the subject of Computer Science is, but many are either directed

at university level education (for example, [9]), or are somewhat abstract and hard

to follow for a non-expert, or are more comprehensive than is appropriate for K-12

education.

The “Great principles of computing” by Peter J. Denning and Craig H.Martell [4],

articulates six principles (communication, computation, recollection, coordina-

tion, evaluation and design) that are used as “windows” to view the space of com-

puter science, and are presented as “cosmic” principles; that is, they should be

ideas that will be true at all times in all parts of the universe. The approach used



by Denning and Martel provides a valuable new window on the subject, and is

complementary to the approach presented here. In fact, Denning and Martell’s

principles are considered in several domains in the chapters of their book [4], and

these expanded topics have elements of overlap with the big ideas presented in

this paper.

Our goal here is to follow a format familiar to curriculum designers and teach-

ers outside of computer science. The approach taken here was initiated from a

request of a curriculum designer with no background in computer science, who

asked for the equivalent of a paper called “Big ideas of science education” [7] that

had the goal of identifying:

. . . the key ideas that students should encounter in their science ed-

ucation to enable them to understand, enjoy and marvel at the natural

world.

Such a definition does not necessarily require an exhaustive list of everything

covered by the topic, but is focused more on what a younger student should take

away from their education, regardless of whether they will specialise in the sub-

ject, or use the knowledge to be a more informed citizen. This makes the focus

more on concepts that are fundamental, but not obvious to the general public.

For example, many people would assume that a program (algorithm) that is given

twice as much data to process would take twice as long, whereas in reality it is

sometimes much worse than this, and other times is much better. Computer sci-

ence is full of paradoxes and surprises that provide opportunities for students to

understand, enjoy and marvel at the digital world, and we are particularly inter-

ested in ensuring these are captured so that the ideas are in line with the intention

of the “Big ideas of science education” [7].

Schwill considered how to develop a set of “fundamental ideas” in 1994 [10].

Our process and goal has much in common with Schwill’s guidelines, which sug-

gest considering the vertical and horizontal applicability of ideas (vertical means

that they can be make sense to students at a variety of levels, and horizontal means

that they have broad applicability), wanting the ideas to be relevant in the longer

term, and ensuring that the ideas can be observed in everyday life.

Our work has focused on the subject of computer science. In K-12 curricula

computer science may appear under headings such as Computational Thinking,

Computing or Digital Technologies. While such curricula are likely to include

topics outside of computer science (such as how to use particular types of software

as a tool), our interest is in the parts of the topic that may not be so obvious because

computer science has not previously been a subject in schools, and teachers and

curriculum designers are unlikely to have studied it themselves, particularly those

working at the grade school level. This contrasts with curriculum topics relating



to teaching with computers (e.g. e-learning), or teaching how to use computing

devices, which is sometimes referred to as ICT [6].

We also note that the ideas don’t necessarily reflect the weight that might be

given to a topic. For example, programming is just one of our ten big ideas, but in

many curricula considerable time is spent on this, partly because it is a skill that

can require some time to acquire. Conversely, there will be other topics around

learning to use or configure computers that appear in curricula but not the big

ideas because students need to learn to do these things, even though they aren’t

necessarily a fundamental concept from computer science.

2 The Big Ideas
The ten big ideas presented in this paper start by looking at data and algorithms,

then the idea of programming to enable the two to interact, then how humans are

involved in the digital world, and concludes with wider ideas and challenges that

come up when implementing real systems.

The description of each of the ten big ideas in this paper is limited to a two-

paragraph summary that uses language that is intended to be accessible to an in-

formed lay person. An expanded version is available online.1 The online version

describes in more detail the meaning and implications of each idea, and presents

examples that are intended to make themmore accessible to those without a strong

background in the subject.

1. Information is represented in digital form.

A huge variety of information is stored as data on digital devices, and shared

between them; the data may be as simple as the number of steps counted on

a fitness tracker, or as complex as the details of every transaction going

through an international organisation; it includes text, images, video, sound

and scientific readings. The remarkable thing is that all of this information

is reduced to bits (binary digits), which are the fundamental element that

makes digital devices so useful.

Digital representations lead to versatile devices because the same hardware

can be used for quite different purposes: a smartphone can play music, take

photos, send email and show videos, because all these things are represented

as bits, which are easily stored, copied, manipulated and transmitted on the

same hardware. This is in contrast to non-digital (i.e., analogue) devices,

which by nature are specialised (phones connect to a phone line, a TV gets

a signal from a TV antenna, music is played from a vinyl disc, and video

1http://www.cosc.canterbury.ac.nz/research/RG/CSE/big-ideas/



is recorded on videotape). Digital data can also be shared without loss of

quality, whereas analogue devices tend to reduce the quality if the material

is copied or re-transmitted.

2. Algorithms interact with data to solve computational problems.

An algorithm is a well-defined process that acts on data to solve some prob-

lem, for example, finding the shortest route on a map, matching two strands

of DNA, or changing the brightness of a photo.

An algorithm can only include steps that a conventional computer could do;

for example, you couldn’t just put in a step that says “find the most effi-

cient solution”. Remarkably, the full power of a conventional digital device

can be realised by an algorithm using just three structures to control pro-

gram flow: sequencing (putting instructions one after the other), selection

(choosing which part of the algorithm to execute based on some values, usu-

ally using an “if” statement), and iteration (repeating part of the algorithm

with a loop). Apart from these three basic types of instruction, a computer is

able to read in information (input), give out information (output) and store

data to use later on. These basic components, or their equivalents, can be

used to define every algorithm, as they define exactly what can, and cannot,

be done on conventional devices.

3. The performance of algorithms can be modelled and evaluated

The main resources that an algorithm uses are time and space (memory).

Time is a key factor because slow programs are annoying to users, and if

a program is going to take decades to complete a calculation, it is better to

determine this before implementing it! Using an unnecessarily inefficient

algorithm might lead to devices wasting power, needing cooling, or running

batteries flat in mobile devices. Some algorithms also need a lot of spare

memory or storage while they are running. This may make the algorithm

infeasible in some cases, while in other cases it might be an excellent trade-

off if the algorithm is faster.

The time taken by an algorithm is usually estimated based on the size of the

input (such as the number of items being searched through, the number of

streets in a map, or the number of pixels in an image). In some cases, when

the input size is doubled, the algorithm takes twice as much time (we call

this a linear time algorithm). But for some algorithms the time grows much

faster than the size of the input, while for others it grows much slower. It

is important to at least estimate the time it will take an algorithm to solve a

problem before implementing it, as it might be very sensitive to the size of



the input; perhaps a program works satisfactorily in tests, but with a larger

input it might take a lot longer.

4. Some computational problems cannot be solved by algorithms.

There are some computational problems that we can prove will never have

programs written to solve them (these problems are not computable). For

example, it can be proved that no one will ever be able to write a general app

that can determine whether or not another app will freeze your smartphone

(this is more formally known as the halting problem).

In addition to non-computable problems, there are many practical problems

for which all known algorithms to find the optimal solution are “intractable,”

which means that no machine currently exists that has the resources required

to execute the algorithm once the size of the input gets fairly large. For these

problems we need to consider algorithms that find an approximate solution

rather than pursue optimal solutions that could potentially take billions of

years to evaluate even on the fastest computer. Some problems have math-

ematical proofs that they are intractable, but there are many problems for

which an algorithm has not been found that runs in a reasonable amount

of time, despite decades of research; yet we also have not proved that the

algorithm cannot exist. Resolving this issue is widely regarded as one of

the biggest questions in computer science!

5. Programs express algorithms and data in a form that can be imple-
mented on a computer.

Programming involves taking algorithms (which might exist only in the pro-

grammer’s head, or may have been designed by a team of people) and turn-

ing them into program instructions that can be executed by a computer.

Program instructions are written in a programming language which is pre-

cisely defined. These instructions manipulate data on the computer, so the

form and meaning of the data is dictated by the program. Programming lan-

guages let the programmer represent complex data as various data structures

that allow for efficient access and manipulation by the program.

Because the capabilities needed to fully control a general-purpose computer

(which covers most digital devices) can be defined by six properties, con-

sisting of three control structures (often expressed as sequence, selection,

iteration), and three ways to deal with data (input, output and storage),

these properties (or their equivalent) are also the key elements of writing

programs. Consequently, any programming language that has all of these

elements can be used to write any computation that any other full program-

ming language could be used for, and the differences between languages



is largely to do with how well they suit a particular situation (e.g. for pro-

cessing files, running on a smartphone, teaching programming, or running

an enterprise system), or how suitable their built-in capabilities are for the

domain.

6. Digital systems are designed by humans to serve human needs.

This is the driver for all the ideas above; digital devices must be fast, reli-

able and match a human need appropriately if people are to use them, and

because they are designed by people, the process for designing them needs

to enable the developers to efficiently turn creative ideas into working prod-

ucts.

This means that there are (at least) three broad areas concerned with hu-

man factors: creating interfaces that are easy to use in the situation they are

intended for, developing software on a large scale (potentially with thou-

sands of people contributing to it), and making sure that the product meets

the needs of the user (the product is reliable, does what is intended, and is

completed in a timely fashion). It is important that both users and develop-

ers of digital systems, understand the impact of technology on humans, the

responsibilities of those who work on it, and possibly even whether or not

the systems should be constructed. All of these concerns require some un-

derstanding of human behaviour (psychology), interaction (sociology), and

capability (physiology).

7. Digital systems create virtual representations of natural and artificial
phenomena.

Computer simulations and virtual systems are used to create virtual versions

of processes in the physical world, and also to create imagined scenarios.

Simulations can be used to reduce cost (e.g. simulating a physical structure

to fine tune it before building it, or simulating different financial scenarios to

choose the most effective strategy) and to reduce risk (e.g. simulating dan-

gerous situations to give aircraft pilots experience, or simulating the spread

of a disease to determine how best to prepare for an epidemic). Virtual

worlds can be created by generating images and sounds artificially, to make

the user feel that they are in a world imagined by the designer (including

computer games, virtual reality and augmented reality). Virtual machines

provide a simulation of a computer, and this approach is widely used be-

cause it protects the physical hardware and the software from each other,

which can provide a safer and more flexible environment. Artificial Intelli-

gence uses computational techniques to make the kind of decisions that are

normally attributed to human intelligence.



These virtual representations take advantage of the unique properties of dig-

ital devices that enable computing systems to work on vast amounts of data,

and if something goes wrong, they can be re-started in full working order by

simply restoring some data, which is considerably simpler than reinstating

physical objects that have been damaged or placing humans in a dangerous

situation.

8. Protecting data and system resources is critical in digital systems.

Modern computing systems provide access to data and resources that if used

inappropriately could breach privacy, provide unauthorised access to finan-

cial data or other resources, or even bring about physical harm. Security

professionals often say that the weakest link in the security of a computer

system is the user, and so it is essential that all computer users understand

basic computer security principles. These principles include confidentiality

(not allowing unauthorised access to information), availability (legitimate

users can access their information), and integrity (the information is accu-

rate).

Everyone in computing needs to be aware of and understand the tools and

techniques that they can use to make their computing environment more

secure. These tools include encryption methods, detecting and blocking

attacks, authenticating who is accessing a system, and allowing users to

recover from damage, whether malicious or accidental.

9. Time dependent operations in digital systems must be coordinated.

Digital systems have many components that can run independently; these

components can be working in parallel, and on independent schedules. Par-

allelism occurs at many levels in digital systems, from instruction execution

on a CPU, to multi-core systems in a laptop, to data being transmitted over

a network through multiple routes, to large big data systems that process

vast quantities of data in small chunks and combine the results.

When a computational task is being spread over several independent parts

of the system, considerable care is needed to make the most of the ability to

spread the work over multiple devices. Problems need to be broken up into

as many parts as possible that can be processed independently and recom-

bined, and the dependency between these operations can restrict how easily

a problem can be broken into parts.

10. Digital systems communicate with each other using protocols.

Very few digital devices are an island — most are connected by wired or

wireless networks. The goal is to get data through the networks as quickly



as possible while being resource efficient. Networks are prone to errors from

faulty components or transmission interference, and are also vulnerable to

attack from people wanting to eavesdrop on the data or prevent it getting

through.

Techniques are available to minimise these issues, to the extent that people

use wireless data and the Internet for sending important and private informa-

tion without being overly concerned about reliability and security. Protocols

that ensure that the data has arrived safely and efficiently are essential for

almost any situation: personal communications, commercial transactions,

or military control all need to be sure that the data gets through reliably.

3 Conclusion
The big ideas presented above serve to introduce those who are involved with the

design, development, implementation and delivery of computer science curricula

with the wide range of individual topics in the subject. Understanding what the

major landmarks are in the computing landscape will help individuals to see the

bigger picture.

Clearly, a list such as the one presented in this paper is subjective, but to

maintain objectivity the list was developed by discussing it in detail with a number

of computer science education colleagues, at both the higher education and K-12

school level. Early versions were created by showing colleagues the equivalent list

for science, and asking what they thought should be on a list for computer science.

This input was reviewed for commonality, and synthesised into a single list. In

order to ensure that the has been articulated in a way that is meaningful to teachers

the list has been shared with teachers who were relatively new to the subject. The

big ideas presented in this paper are the result of several such reviews.

We believe that we have converged on a list that incorporates practically all

of the ideas that our colleagues regard as the key ideas in the discipline, and that

they have been articulated in a meaningful way. We also believe that the list

can continue to be improved by continuing to solicit and incorporate feedback

from our colleagues. The list above is only an introductory articulation of the big

ideas. An online version expands each idea into examples that are intended to be

meaningful to teachers and non-specialists2. Having the online lists also allows

more detail to be added if necessary to include important ideas that may not have

been captured in our process, and to keep the list relevant to new developments in

the field.

To this end, we welcome feedback from readers of this article. The list to date

2http://www.cosc.canterbury.ac.nz/research/RG/CSE/big-ideas/



has been built up by consulting many members of the CS community around the

world, but we are particularly interested to hear if there are big ideas from Com-

puter Science relevant to K-12 curricula that we may have overlooked through the

process, if there are better ways to express the ideas that highlight their funda-

mental nature, or if there are compelling examples that will help non-specialists

to “understand, enjoy and marvel” at the ideas behind our digital world. Readers

are invited to contact the authors with suggestions.

Acknowledgements
We are greatly indebted to a number of colleagues who spent some time comment-

ing on the ideas, including attendees at the 2016 CSMC workshop and the 2016

combined ISSEP/WIPSCE conference. We would particularly like to acknowl-

edge input from Ira Diethelm, Mike Fellows, Jens Gallenbacher, Juraj Hromkovič,

Tobias Kohn, Wiebke Kothe, and Regula Lacher.

References
[1] Michal Armoni. Computing K-12 curricular updates. ACM Inroads, 4(4):20–21,

2013.

[2] Tim Bell, Peter Andreae, and Anthony Robins. A case study of the Introduction

of Computer Science in NZ schools. ACM Transactions on Computing Education
(TOCE), 14(10):10:1–10:31, 2014.

[3] Neil C C Brown, Sue Sentance, Tom Crick, and Simon Humphreys. Restart: The

Resurgence of Computer Science in UK Schools. Trans. Comput. Educ., 14(2):9:1–
9:22, jun 2014.

[4] Peter J. Denning and Craig H. Martell. Great Principles of Computing. MIT Press,

2015.

[5] Katrina Falkner, Rebecca Vivian, and Nickolas Falkner. The Australian Digital

Technologies Curriculum: Challenge and Opportunity. Proc. Sixteenth Australasian
Computing Education Conference (ACE2014), pages 3–12, 2014.

[6] Steve Furber, editor. Shut down or restart? The way forward for computing in UK
schools. The Royal Society, London, 2012.

[7] Wynne Harlen, Derek Bell, Rosa Devés, Hubert Dyasi, Guillermo Fernández,

De Garza, and Pierre Léna. Big Ideas of Science Education. Science Education

Programme (SEP) of IAP, 2015.

[8] Richard Kick and Frances P Trees. AP CS Principles: Engaging, Challenging, and

Rewarding. ACM Inroads, 6(1):42–45, feb 2015.



[9] Mehran Sahami, Steve Roach, Ernesto Cuadros-Vargas, and Richard LeBlanc.

ACM/IEEE-CS computer science curriculum 2013: reviewing the Ironman report.

In Proceeding of the 44th ACM technical symposium on Computer science educa-
tion, SIGCSE ’13, pages 13–14, New York, NY, USA, 2013. ACM.

[10] Andreas Schwill. Fundamental ideas of computer science. Bulletin – European
Association for Theoretical Computer Science, 53:274, 1994.


