
Identifying the Big Ideas of 
K-12 Computer Science 
Education

Tim Bell, University of Canterbury, NZ
Paul Tymann, Rochester Institute of Technology, New York, USA
Amiram Yehudai, Tel Aviv University, Israel

11/7/2018סמינר מורים מובילים 



2



The big ideas in CS

 When teaching cs, we may focus on details and 
lose sight of the bigger picture.
– Especially in K-12
– Why teach “coding”?, binary numbers?, quicksort? 

 Goal: present a list of the 10 “big ideas” of CS
– based on input from curriculum designers and computer 

science education experts around the world. 
 Presented in a way a teacher can engage with

– use to relate topics taugt to context of a bigger picture. 
 Project started by Tim Bell, U. of Canterbury, NZ

– Author of CS Unplugged , and CS Field Guide
3

http://csfieldguide.org.nz/en/index.html


My goal of this lecture

 Ongoing research, to get feedback of 
active CS teachers
– at different age groups

 Should we drop some of the 10 items?
 Are we missing ideas?
 Are these ideas touched upon?
 Is the level of discourse suitable?

4



Possible take away

 It may useful for a teacher to think – why 
do I teach this? What is the context?

5



Special challenge

 In some countries (eg. NZ), CS 
teachers, especially for early ages, are 
not CS graduates.

 Traing non CS teachers to teach CS in, 
eg. 1st grade is challenging

 (Deciding what/how to teach is equally 
challenging)

 What is the situation in Israel?
6



Big ideas of science 
education
 [Harlen et al., 2015] had the goal of identifying:

“the key ideas that students should encounter in 
their science education to enable them to 
understand, enjoy and marvel at the natural world.”

 Identified 10 big ideas, such as 
– “All matter in the Universe is made of very small particles”,
– “Organisms are organised on a cellular basis, and have a 

finite life span.” 
 It also identified four ideas about science, relating 

to scientific method and the impact of science on 
the world [Harlen et al., 2015].

7



The big ideas in CS

Borrowing from “Big ideas of science 
education” our goal is:

The key ideas that students should 
encounter in their computing education 
to enable them to understand, enjoy 
and marvel at the digital world.

8



The goal

 The big ideas presented here are meant to identify 
the concepts that practicing computer scientists see 
as being key for newcomers (especially students) to 
understand the discipline. 

 For example, a common misconception outside the 
discipline is that computer science is mainly about 
programming, whereas it can be articulated as part 
of a bigger picture. 

 Our goal is to paint the bigger picture of what 
computer science is about in terms that make sense 
to a curious parent, school administrator or 
educationalist. 9



(Misconceptions)

10



Big ideas are/are not

 Not meant as general principles, discipline areas, or 
curriculum topics
– but rather ideas that capture the culture of the subject. 

 Not intended to cover every idea in the study of CS
– But does have broad coverage

 Big ideas for computing education should be stable
– if major changes are needed, the program is too trendy 

and technological or core not well selected [Armoni 2013]. 
 The big ideas are intended to focus on core topics.
 The ideas do not reflect the weight given to a topic. 

– For example, programming 
11



The big ideas may help

 To ensure that important concepts are included in 
new curricula as they are designed. 

 To influence the allocation of teaching resources
 To enable lay people to see how CS is different 

from other disciplines. 
 Teachers and others will see how a topic fits into 

the big picture 
– cover the entire discipline as a whole and not as 

a disparate collection of unrelated ideas.

12



Audience and Terminology
 To inform people outside the discipline, the text of the 

big ideas tries to avoid technical terms that an 
informed lay person might not be aware of. 

 The list of ideas has been developed by soliciting input 
from computer scientists involved in education, and 
tested with teachers who do not have formal education 
in computer science.

 Aim also at schools that teach Digital Technologies, 
Computing, and Computational Thinking (not just CS)

 Use “digital devices” instead of “computer”
– broader range of computing machines eg. smartphones

13



Related work

 What to cover in CS courses is debated for many years
 The ACM CS curriculum (for universities and colleges) 

covers topics chosen by a panel of experts to define a 
“body of knowledge” [Sahami et al., 2014]. 

 Recent AP course “CS Principles” [College Board, 2016, 
Kick and Trees, 2015] focuses on overview of the 
subject, rather than specific skill of programming.
– Advanced Placement courses are advanced US high school 

courses that get credit in colleges

14



Existing “general principles”

 “Great principles of computing” by Peter J. Denning 
and Craig H. Martell (2015), 
– six principles (communication, computation, recollection, 

coordination, evaluation and design). 
– complementary to the approach presented here
– a useful tool for validating the big ideas developed here. 
– expanded into 11 in their book, overlap with our big ideas 

 “Fundamental Ideas of CS” [Schwill 1994]
– Focused on software development - three main areas 

(algorithmization, structured dissection, and language)

15



Existing “general principles”

 The principles of Computational Thinking (CT) : 
– six facets of computing [Wing, 2006, Tedre and 

Denning, 2016]. 
– Logic, Evaluation, Algorithms, Pattern, 

Decomposition and Abstraction 
– intended to identify the thinking needed to 

engage with the ideas of computing

16



Developing the big ideas

 Started by Tim Bell
– Author of CS Unplugged , and CS Field Guide

 Input from community
 Mostly in CS education conferences

– People were asked to write their ideas
– Circulated to participants
– New ideas added, some merged

 Project joined by Paul Tymann, RIT, USA and A.Y.
– Experience in CS K-12 curriculum (NZ, USA, Israel)

17

http://csfieldguide.org.nz/en/index.html


About the big ideas

 Order of ideas reflect logical development
 Start from data and algorithms, and then how they 

interact
 The idea of “human centric” in the middle

– Could be made first, but terminology is needed
 Focus on common models of computing

– Include mobile, supercomputers, embedded systems
– But eg. quantum computing not covered

 Abstraction usually mentioned as important
– Applies to almost each of the ideas
– not as a separate idea 

18



19

The 10 big ideas



20

1. Information is represented in 
digital form.

1. Information is 
represented in digital 
form.



1. Digital Representation

 Huge variety of information is stored and shared
 Simple

– eg. number of steps on a fitness tracker
 or complex 

– details of every transaction through a big bank
 Includes text, images, video, sound and scientific 

readings.
All of this information is reduced to binary 
digits (bits) and makes digital devices useful. 

21



1. Digital Representation

 Lead to versatile devices: same hardware (eg. 
smartphone) for different purposes: 
– music, photos, email, videos,
– because all represented as bits,
– easy to store, copy, transmit on same hardware. 

 Non-digital (analog) devices are specialized
 Digital data can be shared without loss of quality

– analog devices reduce quality at copy or re-transmit.

22



23

2. Algorithms interact 
with data to solve 
computational problems.



2. Algorithm

An algorithm is a well defined process 
that acts on data to solve some 
problem, 
for example 
 finding the shortest route on a map,
 matching two strands of DNA, 
 changing the brightness of a photo. 

24



2. Algorithm
 Can only include steps that a computer could do
 Full power of a digital device is realised by an 

algorithm using three structures for program flow: 
– sequencing 
– selection (based on some values) 
– iteration

 a computer can also
– read in information (input) 
– give out information (output) 
– and store data to use later on

25



26

3. The performance of 
algorithms can be 
modelled and evaluated



3. Performance

 Main resources used by algorithm: time and space 
(memory). 

 Time is a key factor: 
– slow programs are annoying to users, 
– if a program takes decades, should know it in advance
– An inefficient algorithm wastes power; have an 

environmental impact; battery may run out.
 Some algorithms need a lot of spare memory

– May make the algorithm infeasible in some cases,
– but may be tradeoff if the algorithm is faster.

27



3. Performance

 running time of an algorithm is usually estimated 
based on the size of the input
– Eg. number of items being searched through, the number 

of streets in a map, the number of pixels in an image. 

 The time may grow with size of the input (linear) 
– But may be better than that, and maybe worse. 

 It is important to estimate the time before 
implementing the algorithm
– May be very sensitive to the size of the input
– a program may work well in tests, but take much longer 

with a larger input
28



29

4. Some computational 
problems cannot be 
solved by algorithms.



4. Unsolvable problems

 Some computational problems will never 
have programs written to solve them (these 
problems are not computable). 

 For example, it can be proved that no one 
will ever be able to write a general app that 
can determine whether or not another app 
will freeze your smartphone (this is more 
formally known as the halting problem).

30



4. Unsolvable problems
 In addition, exist many practical problems for which all 

known algorithms for optimal solution are “intractable,” 
– no machine has the resources to execute the algorithm when 

size of input is fairly large. 
 For these problems, need heuristics to find an 

approximate solution instead of optimal solutions 
– Some problems have proofs that they are intractable
– but for many problems an algorithm that runs in a reasonable 

amount of time was not found, despite decades of research, 
yet we also have not proved that an algorithm cannot exist 

 Resolving this issue is widely regarded as one of the 
biggest questions in computer science.

31



32

5. Programs express 
algorithms and data in a 
form that can be 
implemented on a 
computer



5. Programs

 Programming involves taking algorithms (which 
might exist only in the programmer's head, or may 
have been designed by a team of people) and 
turning them into program instructions that can be 
executed by a computer. 

 Program instructions are written in a programming 
language which is precisely defined. 

 These instructions manipulate data on the 
computer, so the form and meaning of the data is 
dictated by the program.

33



5. Programs
 To fully control a general purpose computer (most 

digital devices) need six properties: 
– 3 control structures (sequence, selection, iteration), 
– and 3 ways to deal with data (input, output and storage)

 These are also key elements of writing programs. 
 So any programming language that has all of these 

can be used to write any computation that any 
other full programming language could be used for 

 The differences between languages is mostly how 
well they suit a particular situation
– e.g. for processing files, running on a smartphone, 

teaching programming, or running an enterprise system. 34



35

6. Digital systems are 
designed by humans to 
serve human needs.



6. Humans

 This is the driver for all the ideas above 
 Digital devices must be fast, reliable and 

match a need appropriately if people are to 
use them.

 And because they are designed by people, 
the process for designing them needs to 
enable the developers to efficiently turn 
creative ideas into working products. 

https://youtu.be/Uw0PISu2pog
36

https://youtu.be/Uw0PISu2pog


6. Humans
 There are 3 broad areas concerned with human factors: 
1. Creating interfaces that are easy to use in the situation 

they are intended for
2. Developing software on a large scale, making sure the 

product meets user’s needs, is reliable, does what 
intended, and completed in a timely fashion 

3. The impact of technology on humans, the responsibilities 
of those who work on it, and even whether or not we 
should construct it. 

 Require understanding human behavior (psychology), 
interaction (sociology), and capability (physiology).

37



38

7. Digital systems create 
virtual representations 
of natural and artificial 
phenomena.



7. Virtual Representations
 Computer simulations and virtual systems are used to 

create virtual versions of processes in the physical world, 
and also to create imagined scenarios. 

 Simulations can be used to reduce cost 
– e.g. simulating a structure to fine tune it before 

building it, or simulating different financial scenarios to 
choose the most effective strategy

 Simulations can also be used to reduce risk 
– e.g. simulating dangerous situations to give aircraft 

pilots experience, or simulating spread of a disease to 
determine how best to prepare for an epidemic. 

39



7. Virtual Representations
 Virtual worlds can be created by generating images and 

sounds artificially, to make the user feel that they are in a 
world imagined by the designer 
– Eg. computer games, virtual reality and augmented reality. 

 Virtual machines provide a simulation of a computer, and 
this approach is widely used because it protects the 
physical hardware and the software from each other, 
which can provide a safer and more flexible environment. 

 Artificial Intelligence models human intelligence, attempts 
to replicate human decision making and reasoning.

40



7. Virtual Representations

 These virtual representations take advantage of the 
unique properties of digital devices that enable a 
system to work on vast amounts of data

 if something goes wrong, they can be re-started in 
full working order by simply restoring some data, 
which is considerably simpler than reinstating 
physical objects that have been damaged or placing 
humans in a dangerous situation.

41



42

8. Protecting data and 
system resources is 
critical in digital systems.



8. Protection
 Modern computing systems provide access to data and 

resources that if used inappropriately, could breach 
privacy, provide unauthorised access to financial data or 
other resources, or even bring about physical harm. 

 Security professionals often say that the weakest link in 
the security of a computer system is the user 
– so it is essential that all computer users understand basic 

computer security principles. 
 These principles include 

– confidentiality (prevent unauthorised access to information), 
– availability (legitimate users can access their information), 
– and integrity (the information is accurate). 

43



8. Protection

 Computer users must be aware of and understand 
the tools and techniques that they can use to make 
their computing environment more secure. 

 These tools include 
– encryption methods, 
– detecting and blocking attacks, 
– authenticating who is accessing a system,
– and allowing users to recover from damage, 

whether malicious or accidental.

44



45

9. Time dependent 
operations in digital 
systems must be 
coordinated.



9. Coordination

 Digital systems have many components that can run 
independently
– these components can be working in parallel, and 

on independent schedules. 
 Parallelism occurs at many levels in digital systems:

– instruction execution on a CPU, 
– multi-core systems in a laptop, 
– data being transmitted over a network through 

multiple routes, 
– large “big data” systems process huge data in 

small chunks and combine the results. 46



9. Coordination
 Some systems (eg. embedded systems, that obtain their 

input from multiple sensors, and produce output to 
multiple actuators), must cope with this inherent 
concurrency even if they have only one processing unit.

 When a computational task is spread over several 
independent parts of the system, need to make the most 
of the ability to spread the work over multiple devices.
– Problems need to be broken up into as many parts as 

possible that can be processed independently and 
recombined, 

– The dependency between these operations can 
restrict how easily can break a problem into parts. 47



48

10. Digital systems 
communicate with each 
other using protocols.



10. Communication protocols

 Very few digital devices are an “island” -
most are connected by networks. 

 The goal is to get data through the 
networks as quickly as possible. 

 Networks are prone to errors from faulty 
components or transmission interference, 
and are also vulnerable to attack from 
people wanting to eavesdrop on the data or 
prevent it getting through.

49



10. Communication protocols

 Techniques are available to minimise these issues, 
to the extent that people use smartphones and the 
Internet for sending important and private 
information without being concerned about 
reliability and security. 

 Protocols that ensure that the data has arrived 
safely and efficiently are essential for almost any 
situation: personal communications, commercial 
transactions, or military control all need to be sure 
that the data gets through reliably.

50



Summary
 The big ideas presented here provide a framework 

to inform those who are teaching computer science 
curricula so that the wide range of individual topics 
can be seen as part of a bigger picture. 

 Managed to converge on list that incorporates what 
many colleagues regard as the key ideas in CS.

 An online list with more detail may be found in
– http://www.cosc.canterbury.ac.nz/research/RG/CSE/big-ideas/
– http://www.canterbury.ac.nz/media/documents/oexp-

engineering/BigIdeas-webdocument.pdf

51

http://www.cosc.canterbury.ac.nz/research/RG/CSE/big-ideas/
http://www.canterbury.ac.nz/media/documents/oexp-engineering/BigIdeas-webdocument.pdf


52



Evaluation

 As part of our research, we would like 
to evaluate our choice by surveying 
the opinions, mostley of people who 
have been teaching CS to K-12 pupils.

 In particular, we ask you to participate
 (Some of you already responded, 

thanks)
 The survey is anonymous

53


	Identifying the Big Ideas of K-12 Computer Science Education
	Slide Number 2
	The big ideas in CS
	My goal of this lecture
	Possible take away
	Special challenge
	Big ideas of science education
	The big ideas in CS
	The goal
	(Misconceptions)
	Big ideas are/are not
	The big ideas may help
	Audience and Terminology
	Related work
	Existing “general principles”
	Existing “general principles”
	Developing the big ideas
	About the big ideas
	Slide Number 19
	Slide Number 20
	1. Digital Representation
	1. Digital Representation
	Slide Number 23
	2. Algorithm
	2. Algorithm
	Slide Number 26
	3. Performance
	3. Performance
	Slide Number 29
	4. Unsolvable problems
	4. Unsolvable problems
	Slide Number 32
	5. Programs
	5. Programs
	Slide Number 35
	6. Humans
	6. Humans
	Slide Number 38
	7. Virtual Representations
	7. Virtual Representations
	7. Virtual Representations
	Slide Number 42
	8. Protection
	8. Protection
	Slide Number 45
	9. Coordination
	9. Coordination
	Slide Number 48
	10. Communication protocols
	10. Communication protocols
	Summary
	Slide Number 52
	Evaluation

