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What is a computation? 
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Universal computation model:  
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The Extended Church Turing Thesis 

 
 
 
 
 

Extended Church Turing Thesis: “All physically reasonable 
(classical) computational models can be simulated       
with polynomial overhead by a Turing machine”  

                  
Quantum computation - only model that credibly 
challenges the Extended Church Turing Thesis.  

≈ 
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One Quantum Bit (a qubit) 
A quantum system can 
be in a Superposition  
of its possible  
“classical” states   0,1 
 
 
 

A measurement is a  
probabilistic process:  
1. Classical outcome 
2.  The state is projected  
     onto one basis state (collapse) 

+ a b 

|a|2 |b|2 

When we say a qubit 
we mean             
 The state of one 
qubit is a unit vector: 
   21|0| Cba 

2C

0 

0 

1 

1 

Superposition principle 

Measurement principle 
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n Quantum Bits (Qubits) 
one two three 
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The state of n classical bit – described by n bits…  
The state of n Quantum bits – by 2n coefficients!  

Linear(n) Exponential(2n) 

Manin [80], Benoiff [81], Feynman [82]: 
Exponential dimension   

Quantum computer?  
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Quantum Computation 

 

Measurement  output 
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Complexity measure: number of gates.  

0,1, . . . ,1,1,0|)0(| 

IU U 

Input: 

Dynamics: 

)0(|)(|  Ut 

 
 
 
 

CNOT  










01

10

NOT  
 
 
 





0|1|

1|0|









|1|

|0|

2

1|0|

2

1|0|

Hadamard  
 
 
 




















0100

1000

0010

0001
















2

1

2

1

2

1

2

1

Hadamard + classical gates  
are quantum universal            



 Interference 
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Weights on  
arrows  
can be negative! 
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Exponential algorithmic speedups 

 Shor 

Graph 
 reachability  
[CCDFGS’02] Pell’s  

equation 
[Hallgren’02] 

Approximate 
Jones  

Polynomial  
[AJL’05] 

Simulating  
Quantum  
systems  

[L’96, JLP’11] 

Quantum computation seems to  
provide exponential algorithmic  
speed-ups 

 
 
 
 
 
 

Factoring [‘94]  
 

N=PQ 

N 

P Q 
Linear Equations 

 [HHL’08 
….] 

EHKS’14 

UnitGroup 



BQP: Class of problems solvable in 
 polynomial time by quantum computers 
BPP: Class of problems solvable in 
polynomial time by classical computers 
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A Computational complexity map 

  

Widely believed:  
QC violates ECTT 

     BQP is strictly larger than BPP, 
Quantum Systems can in principle  

physically implement BQP 

 
 
 
 

All physically realizable  

computational models can be  

simulated in poly time by a Turing  

machine” (Extended CTT) 
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Entanglement 

 

 
n quantum bits – require 2n complex numbers. 
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Type 1: 
 Bell’s game 

   { 0 ,1 }B X

   a   b

0.75Pr(Win)

0 b  a

1 b  a

1 b  a

1 b  a
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They win if:  

 >0.85!  Pr(success) with EPR 

{ 0 ,1 }  X A 

    ba :                     {(1,1)}X,X

ba : (1,0)} (0,1), {(0,0),X,X 
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Type II: Two Registers entanglement 
Two distributions over n bit 
strings.  
Are they equal or  
their supports do not intersect?  
 
  
need exp(n) many samples. 
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 Can estimate <P|Q>  

efficiently  
(by measuring the left qubit) 
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Type III: Quantum error correcting codes 
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A=ZZZZ 
B=XXXX 



15 

The 2nd quantum revolution:  
Concepts from CS 

Hardness 

Computational lens on Physics 
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 Complexity,  

 

 
 

Universality 
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Universal quantum models 

TQFT:  
KitaevFreedmanWang’02, 
KitaevLarsenWang’02 

Quantum Walks: Childs’08 

Measurement based quantum computation:  
RaussendorfBrowneBriegel’03 

Adiabatic:  
FarhiGoldstoneGutmann’00 
AharonovKempeLandauLloydRegevVanDam’04 

Riemannian Geometry:  
NielsenDowlingGuDoherty’06 

H(0) 
H(T) 
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Reduction  
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Universal quantum models = efficient reductions 

TQFT 

Quantum  
Walks 

Measurement based  
quantum computation 

Adiabatic 

Riemannian Geometry 

The quantum  
circuit model 

H(0) 
H(T) 

U1 

…. U5 U4 
U3 U2 

BQP 



  
BQP Verifier 

Higher Complexity classes: NP & Quantum NP 



 Verifier 

“hint” input input 

. . .)()( 1 234731  xxxxxx

3-SAT 

Is the input formula  
satisfiable?  

Cook-Levin’71:  
3-sat is NP complete:  
Any problem in NP can be  
reduced to it.  

Quantum Cook-Levin 
[Kitaev’98] 

 
 
 
 
 

 Given:  
Local Hamiltonian H on n qubits , 
 a,b s.t. b-a>1/poly(n) 
 Objective:  
Is min. eigenvalue of H <a or >b      





m

j

jHH
1



Major CS problem:  
Constraint Satisfaction 
 Problem (CSP) Major CMP problem:  

The Local  
Hamiltonian  

Problem:   

CSP is a special 
case!  

 
 
 

 Given: Local Hamiltonian 
 Objective:  Ground energy  

 
 
 
 
 
 

Given:  CSP formula 
Objectives:   Min. # of Violations 

Optimal assignment 
Approximations 

Local 
Hamiltonians 

Classical 
CSPs 
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


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...)()( 1234731  xxxxxx

Quantum Hamiltonian complexity 

A roadmap for Hamiltonians 



Reductions for  
Quantum simulations? 

Simulating with noisy systems 
[CiracZoller’12] 

Simulating Physics with computers 
[Feynman’1982] 
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Robustness 
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 Quantum gravity & AdS/CFT  

 
 

CFT as a Quantum  
code subspace 
[AlmheiriDongHarlow’14] 

Robustness in quantum computation  
  

Fault tolerant quantum computation  
[AharonovBenOr’96,Kitaev’96,KnillLafflammeZurek’96] 
Is the noise local?  

  Quantum simulations of noisy systems 
  Understanding the complexity of rubust systems 

Controlled robustness:  
Quantum Error correcting codes [Shor’95,Steane’95]  

Quantum Error correction for sensing 
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Interaction 

 

 

 
 

Inspired by GoldwasserMicaliRakoff’85 
Motivated by conversations with Oded Goldreich and Madhu Sudan 
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A Physical Experiment 

A physical theory 

F=ma 
Quantum Mechanics 

Cannot test the  
“Quantum Universal” regime in  

the usual “predict & compare” paradigm 

Predict & compare paradigm 



Is Quantum Mechanics (QM) Falsifiable?       

27 

 
        
Question 1: Fundamental:  Is QM Falsifiable? 

Question 2: Experimental: Can Experimentalists Test  

Their systems,  claimed to be quantum computers?  

Question 3: Cryptographic: How can we safely Delagate  

computations to an untrusted company claiming to have a Q comp.?   
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BQP 
 

BPP 
 

Factoring 

Shor’s algorithm :  a recipe for an experiment to test QM outside of BPP 
                              possible to check correctness efficiently 

Shor’s Partial Answer [Vazirani’07]  

But Factoring does not suffice:  

1. Factoring is probably not BQP universal .  
2. What if I want to test a small system, with no ability to run 
      Quantum error corrections?  
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. . . 
BPP verifier 

All powerful prover,  
but untrusted 

Interactive proofs [Goldwasser, Micali, Rackoff’85] 

Why did Shor’s algorithm for factoring N=PQ succeed in  

getting arround the “usual type of experiments” pitfall?  
 

P,Q 

With interaction,  
A computationally weak Verifier  

Can get convinced of highly complex claims  
Without knowing how to prove them!!! 

X N 

BQP Prover 
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The power of randomized interaction 



Verifying quantum evolutions 
[A’EbanBenOr’08, BroadbentKashefiFitzimons’09, Broadbent’15,A’BenOrMahadev’17] 

. . . BQP Prover 
Verifier: BPP 

+ O(1) qubits 

Theorem: A BQP prover can prove any quantum 
circuit to a BPP+O(1) qubits  verifier! 

2 dim Hilbert space  dim Hilbert space 12 d

Mahadev’18: verification by classical verifier 
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Interactive Experiments  
With weak control 

. . . 

Could we more cleverly use  
interactions in experiments? 
(e.g., to learn an unknown Hamiltonian) 
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Quantum supremacy in NISQ devices 
[BravyiGossetKoenig’18, Martinis group, BoulandFeffermanNirkheVazirani’18,IQC] 

 
Practical Quantum algorithms 
HHL based linear algebra algorithms, Machine learning [KerenidisPrakash’17,Teng’18]  
 
Are noisy quantum devices useful?  
Theory!   
 
Is the model of local noise correct?   
How can we verify that! 
 
New Exponentially better Quantum algorithms!!  
 
 
 
 
 
 
 

Main Challenges  
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Thanks! 

 
 



Quantum Computation & Machine learning (CNT’D) 

Applied in:  
K-means Clustering [LMR13] 
Principal component analysis [LMR13] 
Recommendation systems in poly(k)polylog(N) 
[KerenidisPrakash17] 

Many caveats  
(see: “QML algorithms: Read the fine prints”,  
Aaronson, Nature’15) 

Ewin Tang’s breakthrough  
Quantum inspired classical poly(k)polylog(N)  
recommendation system [2018] (and follow up dequantizations)  
 

Remains a big open question:  
Find an Exponential quantum speed up  

for an interesting ML problem.  



 
 
 

 Given: Local Hamiltonian H on n qubits , 
            a,b s.t. b-a>1/poly(n) 
 Objective: Is min. eigenvalue of H <a or >b      

Quantum Cook Levin 
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Computation is local 

Theorem: Approx groundvalue of a local Hamiltonian is QNP 
complete [Kitaev98 (based on Feynman82)] 
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PCP theorem (query version): Proofs have a slightly longer 
format in which the verifier can read only  

O(1) random bits!  

The (classical) PCP theorem [AS’92,ALMSS’02] 

Implications: hardness of approximation.  
 
 

In physical language  Exist systems which need to  
solve NP to relax to their Gibbs state at room temperature! 

 
 
 
 
 
 
 
 

1 
m/10 

PCP thm, Gap amplification version:  
There exists an efficient 

transformation f: CSP  CSP’ s.t.  
 X is satisfiable  so is f(X) 

 X is unsatisfiable   
UNSAT(f(x))>10%.   

  

≈ Verifier Verifier 
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qPCP conjecture, query version: QMA is equivalent to the 
class of languages in which the witness is checked by 

reading O(1) random qubits! 

The qPCP conjecture [AALV’10] 

  
 
 

In physics language  Exist systems which need to  
solve QMA to relax to their Gibbs state at room temperature! 

 
 
 
 
 
 
 

1 
m/10 

qPCP, Gap amplification version:  
There exists a (quantum) efficient 

transformation f: H  H’ s.t.  
 H has 0 groundvalue   so does H’ 

 gv(H)>b  gv(H’)>m/10.   

  

≈ Q Verifier Q Verifier 

Compare to quantum fault tolerance :long range quantum entanglement 

qPCP: O(1)-Approximation of average Energy is QMA hard 
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A scheme based on random quantum polynomial codes 
[Ben-Or,Crepeau,Gottesman,Hassidim,Smith’06]  

 

 )g(,)g(),g(|

ag(0)
ddeg(g) :g

21
1 


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 m
q

a m
s 

Quantum Reed-Solomon ECCs 
 [A’BenOr’96] 

Shifted by a random Pauli key Q on m qudits, and a random  

sign key k{-1,+1}n : 

 

 

 

 

This can detect any error, not necessarily local, w.h.p.   
(The sign key K protects against Paulis. The random Pauli translates general operators to random Paulis) 

 )g(k,)g(k),g(k(|

ag (0 )
dd eg (g ) :g

n2211, 




 mkQa Qs 

The prover can apply gates without knowing the code!!! 
He applies gates on the bare state; the verifier corrects his own keys  
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Possible 
with two 
entangled  
provers 
[ReichardtUngerVazirani’12] 

  

Open: Can this be done with one classical verifier?  

Verifying quantum evolutions 

Can interactive experiments be used elsewhere?  

Other verification of quantum supremacy: 
Boson sampling [AaronsonArkhipov’13] 

QC with commuting gates [BremnerJoszaScheperd’10, 
                                                                BremnerMontaneroSchepard’15] 

Testing unitarity of blackhole evolution [Hayden & Preskill’07]  



Quantum Computation & Machine learning (CNT’D) 

Applied in:  
K-means Clustering [LMR13] 
Principal component analysis [LMR13] 
Recommendation systems in poly(k)polylog(N) 
[KerenidisPrakash17] 

Many caveats  
(see: “QML algorithms: Read the fine prints”,  
Aaronson, Nature’15) 

Ewin Tang’s breakthrough  
Quantum inspired classical poly(k)polylog(N)  
recommendation system [2018] (and follow up dequantizations)  
 

Remains a big open question:  
Find an Exponential quantum speed up  

for an interesting ML problem.  


